Abstract

IntroductionWe investigated changes in electrocardiographic spatial QRS and T vectors as markers of electrical remodeling before and after cardiac resynchronization therapy (CRT) and their association with altered outcome. Methods and resultsIn 41 patients with LBBB, ECGpost was recorded during intrinsic rhythm after interrupting CRT pacing and compared to the pre-implant ECGpre and the ECG during CRT (ECGCRT). Mean spatial angles between QRS and T vectors were determined with the Kors matrix conversion. Left ventricular ejection fraction (LVEF) was determined with nuclear isotope ventriculography before CRT implantation (LVEFpre) and at inclusion (LVEFpost). Following CRT, LVEF improved significantly from 26±10 to 36±14% (p=0.01). Duration of QRSpre (168±15ms) was not different from QRSpost (166±15ms). A smaller angle between QRSCRT and Tpost was related to a greater angle between Tpre and Tpost (Pearson’s R −0.61 — p<0.001). During follow-up (30±2months) 9 patients (22%) died. Univariate Cox regression revealed higher mortality in the patients with lower LVEFpost (HR 1.10, p=0.01), a larger angle QRSCRTTpost (HR 1.03, p=0.03), a smaller angle QRSpreQRSpost (HR 0.97, p=0.03) and smaller angle TpreTpost (HR 0.95, p<0.01). After adjusting for LVEFpost, only smaller angle TpreTpost was associated with mortality (HR 0.96, p=0.03). ConclusionsElectrical remodeling can be quantified by measuring the angles between spatial QRS and T vectors before, during and after CRT. In absence of QRS duration changes, more extensive electrical remodeling is associated with a significantly better survival. QRS and T vector changes deserve further investigation to better understand the individual response to CRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.