Abstract
We focus on the molecular and cellular basis of excitability, conduction and electrical remodeling in heart failure with dyssynchronous left ventricular contraction (DHF) and its restoration by cardiac resynchronization therapy (CRT) using a canine tachy-pacing heart failure model. The electrophysiological hallmark of cells and tissues isolated from failing hearts is prolongation of action potential duration (APD) and conduction slowing. In human studies and a number of animal models of heart failure, functional downregulation of K currents and alterations in depolarizing Na and Ca currents and transporters are demonstrated. Alterations in intercellular ion channels and extracellular matrix contribute to heterogeneity of APD and conduction slowing. The changes in cellular and tissue function are regionally heterogeneous, particularly in the DHF. Furthermore, beta-adrenergic signaling and modulation of ionic currents is blunted in heart failure. CRT partially reverses the DHF-induced downregulation of K current and improves Na channel gating. CRT significantly improves Ca homeostasis, especially in lateral myocytes, and restores the DHF-induced blunted beta-adrenergic receptor responsiveness. CRT abbreviates DHF-induced prolongation of APD in the lateral myocytes, reduces the left ventricular regional gradient of APD and suppresses development of early afterdepolarizations. CRT partially restores DHF-induced electrophysiological remodeling, abnormal Ca homeostasis, blunted beta-adrenergic responsiveness, and regional heterogeneity of APD, and thus may suppress ventricular arrhythmias and contribute to the mortality benefit of CRT as well as improving mechanical performance of the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.