Abstract

In this study, the sintering behavior of silver (Ag) nanoparticle inks was investigated when different particle sizes and sintering methods were employed. Ag nanoparticle inks with two different particle sizes were investigated with average particle diameters of 12 nm and 50 nm. The two kinds of Ag nanoparticle inks were inkjet-printed onto glass substrates. The printed inks were sintered by a furnace and a continuous wave (CW) laser at a wavelength of 532 nm. The specific resistance and surface morphology of the Ag nanoparticle (Ag NP) inks were investigated under various furnace temperatures, laser intensities, and time durations. The ex situ specific resistance of each Ag NP ink was measured by a multimeter to determine the effects of various sintering conditions such as the furnace temperature, laser intensity, and sintering duration. To investigate the correlation between the specific resistance and surface morphology of the Ag NP inks, field emission scanning electron microscopy images were obtained. In addition, the effect of the particle size on the specific resistances of the inks annealed by the furnace and CW laser was evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call