Abstract

Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited amorphous ITiO films obtained at 20 W began to crystallize at the annealing temperature of 155 °C. Although there was no significant change in the crystalline structure of the films, electron mobility improved gradually with further increase in the annealing temperature. After post-annealing at 580 °C, the highest electron mobility of 50 cm 2 V −1 s −1 was obtained. Compared with the amorphous ITiO films, the ITiO films with a certain degree of crystallinity obtained at high deposition power were less affected by the vacuum annealing. Their electron mobility also improved due to post-annealing, but the increase was insignificant. After post-annealing, the optical transmission of the 325 nm-thick ITiO films showed approximately 80% at wavelengths ranging from 530 to 1100 nm, while the sheet resistance decreased to 10 Ω/sq. This makes them suitable for use as transparent conductive oxide layers of low bandgap solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.