Abstract

Much attention has been paid to barium zirconates because their high protonic conductivity and chemical stability are excellent properties for solid electrolytes. However, most studies have focused on highly doped materials such as 10 or 20 mol% Y-doped barium zirconates. In this study, the bulk and the grain boundary electrical properties of 1 mol% Y-doped barium zirconate are investigated as a function of temperature, water partial pressure, and oxygen partial pressure. At low temperatures and in wet atmospheres, the bulk of the barium zirconate predominantly conducts protonic defects, whereas, at high temperatures and in dry conditions, it is mixed oxygen ionic and electron-hole conducting. In the grain boundary, the protonic conductivity is a few orders of magnitude lower than the protonic conductivity in the bulk. In this study, possible causes for the low protonic conduction at the grain boundaries are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.