Abstract

High electrical performances of polytetrafluoroethylene composites containing few-layer graphenes are established by solid-state processing. Polytetrafluoroethylene and FLG powders are mechanically mixed without solvents at room temperature, and hot-pressed. Few-layer graphenes are attached to the polytetrafluoroethylene powder, and gradually wrap the powder surface during milling with a low milling speed. The few-layer graphene-wrapped polytetrafluoroethylene powders readily facilitate the formation of a continuous few-layer graphene network due to the contact between adjacent few-layer graphene-wrapped powders. The final composites using few-layer graphene-wrapped polytetrafluoroethylene powders include a three-dimensional conducting network. Eventually, the wrapping morphology of the polytetrafluoroethylene/few-layer graphene powder results in a remarkable electrical conductivity of 7353 Sm−1 at 30 vol. %. few-layer graphene loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.