Abstract

AbstractHybrid organic–inorganic perovskite solar cells (PSCs) are one of the most promising candidates for next generation photovoltaics. Further improvement in their performance, particularly efficiency, durability and reproducibility, requires a deep understanding of recombination losses during fabrication and within a device itself. In this work, we report a contactless, imaging‐based procedure to spatially resolve electronic properties of PSCs including implied open‐circuit voltage (iVoc) and its temperature coefficient, ideality factor (nid) and activation energy of recombination (EA) by employing illumination intensity and temperature‐dependent photoluminescence. The illumination intensity dependence of iVoc allows the extraction of nid whereas its temperature dependence allows the extraction of the temperature coefficient and EA. This imaging approach is then applied to investigate changes of these electronic parameters on fully and partially fabricated devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.