Abstract

The effect of Nb and excess PbO on the structural and electrical properties of conventionally prepared Nb-doped PZT 65/35 ceramics has been studied in this work. It is found that, from excess PbO contents as high as 4 mol%, the solubility limit of Nb in PZT occurs below 4 mol%, while a secondary prevoskite-like phase develops in the dielectric system for a further increase of Nb content. The ferroelectric and piezoelectric properties (permittivity, ferro-paraelectric phase transition, polarization, electromechanical coefficients) of such materials are thus found to be strongly dependent on the degree of densification and structural phase development during sintering at high temperatures. In particular, the nature of the ferro- to para-electric phase transition is in these materials noted to better fit a generalized rather than Smolenskii-Isupov equation, the former being appropriate for the characterization of non-purely diffuse transitions. In nice agreement with the Bokov model, substitution of Nb5 + for (Zr,Ti)4 + is found to induce only poorly diffuse phase transition in these materials. The electrical properties reported in this work are in magnitude comparable to those exhibited by PZT-based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.