Abstract

A nematic comb-shaped copolymer and its nanocomposites containing 0.063-0.54 in vol % of silver nanoparticles were studied by broadband dielectric spectroscopy. The frequency dependence of specific alternating current (ac) conductivity was used to estimate the temperature-frequency intervals of charge transfer by long and short distances, respectively. With increasing the concentration of nanoparticles, specific ac conductivity increases. The concentration dependence of dielectric permittivity suggests that distribution of nanoparticles is homogeneous, and conducting channels are not formed. With increasing the concentration of silver nanoparticles, the glass transition temperature of the nanocomposites, described in terms of the strength/ fragility concept, increases, whereas the strength parameter D decreases (i.e., “fragility” increases).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.