Abstract

We report on the fabrication of micrometric regular metallic arrays obtained by using, as a template, a polymeric membrane with regular pores. The membranes were prepared by embedding hydrophobized silica colloids into a polymer layer and subsequently removing them. We have investigated the electronic transport properties of the metallic arrays as a function of the applied electric field and temperature. Simple current voltage (IV) characteristics present a strong switching behavior with ION/IOFF ratios up to 104. Different temperature dependences of the resistance in the different ranges of the applied electric field have been observed. Finally, the performances of a field effect device (FET), with the conducting channel and insulating layer consisting of a Gold dot array and a STO substrate, respectively, have been investigated. The channel resistivity has been modified at least of two orders of magnitude and a mobility of about 2 cm2/V*s has been extracted by the analysis of the FET transfer curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call