Abstract
The paper presents the results of electrical characterization in the wide temperature range (120 - 320 K) of the interface and bulk properties of high-k LaLuO3 dielectric deposited by molecular beam deposition (MBD) on silicon substrate. The energy distribution of interface state density is presented and typical maxima of 1.2×1011 and 2.5×1011 eV-1cm-2 were found at about 0.25 - 0.3 eV from the silicon valence band. The charge carrier transport through the dielectric at the forward bias was found to occur via Poole-Frenkel mechanism, while variable range hopping conduction (Mott's law) controls the current at the reverse bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.