Abstract

The electrical properties of GaAs nanowires grown on a 6H-SiC (0001) substrate covered with graphene single layers and bilayers are studied. The nanowires are grown by molecular-beam epitaxy, with gold as a catalyst. The electrical properties are studied by measuring and analyzing the current–voltage characteristics of single nanowires vertically grown on a substrate. Numerical simulation of the experimental current–voltage curves revealed the presence of a ~0.6-V-high Schottky barrier between the nanowires and graphene. The appearance of the barrier is due to the formation of excess arsenic at the nanowire/graphene interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.