Abstract

Electrical properties of 16 keV, focused-ion-beam (FIB) (beam diameter: 1 µm, current density: 50 mA/cm2) boron-implanted silicon layers have been investigated as a function of beam scan speed and ion dose, and compared with those obtained by conventional implantation (current density: 0.4 µA/cm2). High electrical activation of the FIB implanted layers is obtained by annealing below 800°C as a result of the increase in amorphous zones created in the implanted layers. Amorphous zone overlapping is assumed to occur at FIB implantation doses of 3–4×1015 ions/cm2 from the results of electrical activation and the carrier profile of implanted regions annealed at low temperature, if beam scan speed is lowered to about 10-2 cm/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.