Abstract

ABSTRACTThe Schottky barrier heights of single crystal NiSi2 layers on Si(111) have been studied by current-voltage, capacitance-voltage and activation energy techniques. Near ideal behavior is found for Schottky barriers grown on substrates cleaned at ∼820°C in ultrahigh vacuum. The Fermi level positions at the interfaces of single crystal type A and type B NiSi2 are shown to differ by ∼0.14 eV. Transmission electron microscopy demonstrated the epitaxial perfection of these suicide layers. At a cleaning temperature of 1050° C, the near surface region of lightly doped n-type Si was converted to p-type. The presence of a p-n junction was directly revealed by spreading resistance measurements and resulted in a high apparent Schottky barrier height (≥0.75 eV) which no longer bears immediate relationship to the interface Fermi level position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.