Abstract
The soft chemical method was adopted for the synthesis of cobalt substituted nickel-zinc and zinc-nickel ferrites (Ni0.95-xZn0.05CoxFe2O4 and Zn0.95-xNi0.05CoxFe2O4 for x= 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06. We have recently studied the structural, morphological, magnetic properties, initial permeability, and dielectric constant of the samples. They are found with cubic ferromagnetic spinel structure along with the morphology suitable for high-density recording media. The effective initial permeability μi (μeff) is found to depend on magnetocrystalline anisotropy constant K1 and grain size D. From this present study, the dc resistivity is found to increase linearly with Co2+ substitution for both ZNCF and NZCF ferrites up to x=0.04. After that, the material changes its ferromagnetism to paramagnetism thereby increasing the activation energy. The difference between the two magnetic states (Ferro and para) in NZCF is found to be greater than in ZNCF. The phase transition helps to determine the Curie temperature. The ac conductivity takes place by the hopping of charge carriers called polarons. The conductivity is enhanced with frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.