Abstract
We have synthesized a large amount of boron-doped multiwalled carbon nanotubes (MWNTs) by hot-filament chemical vapor deposition. The synthesis was carried out in a flask using a methanol solution of boric acid as a source material. The scanning electron microscopy, transmission electron microscopy, and micro-Raman spectroscopy were performed to evaluate the structural properties of the obtained MWNTs. In order to evaluate the electrical properties, temperature dependence of resistivity was measured in an individual MWNTs with four metal electrodes. The Raman shifts suggest carrier injection into the boron-doped MWNTs, but the resistivity of the MWNTs was high and increased strongly with decreasing temperature. Defects induced by the plasma may cause this enhanced resistivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physica C: Superconductivity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.