Abstract

As the oxidation and chromium volatilization of chromia‐forming alloy interconnects can cause Solid oxide fuel cells (SOFC) cathode poisoning and cell degradation, spinel coatings like Mn1.5Co1.5O4 have been applied as a barrier to oxygen and chromium diffusion. To evaluate their long‐term stability, the properties of the reaction layer between the Mn1.5Co1.5O4 coating and Cr2O3 scale formed on the alloy surface need to be characterized. Therefore, compositions of Mn1.5−0.5xCo1.5−0.5xCrxO4 (x = 0–2) were prepared to investigate their electrical properties, cation distributions, and thermal expansion behavior at high temperature. With increasing Cr content in manganese cobalt spinel oxides, the cubic crystal structure is stabilized and the electrical conductivity and coefficient of thermal expansion both decrease. The cation distributions determined from neutron diffraction show that Cr and Mn have stronger preference for octahedral sites in the spinel structure as compared with Co.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.