Abstract

The high-power SiC devices require ohmic contact materials, which are prepared by annealing at temperatures lower than 800°C. Recently, we demonstrated in our previous paper [J. Appl. Phys. 95, 2187 (2004)] that an addition of a small amount of Ge to the conventional binary Ti∕Al contacts reduced the ohmic contact formation temperature by about 500°C, and this ternary contacts yielded a specific contact resistance of approximately 1×10−4Ωcm2 after annealing at a temperature as low as 600°C. In this paper, the electrical properties and the microstructures of the Ge∕Ti∕Al contacts (where a slash “/” indicates the deposition sequence) were investigated by current-voltage measurements and transmission electron microscopy observations, respectively, in order to understand the ohmic contact formation mechanism. Ti3SiC2 compound layers (which were previously observed at the metal/SiC interface in the Ti∕Al ohmic contacts after annealing at temperatures higher than 1000°C) were observed to grow epitaxially on the SiC surface after annealing at temperatures as low as 600°C. The Ti3SiC2 layers were believed to act as a p-type intermediate semiconductor layer, which played a key role to reduce the Schottky barrier height at the contacting metal/SiC interface. Further reduction of the contact resistances of the Ge∕Ti∕Al contacts would be achieved by increasing the coverage of the Ti3SiC2 layers on the SiC surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.