Abstract
ABSTRACTThe ceramic Sr-Fe-Co-O has potential use as a membrane in gas separation. This material exhibits high conductivity of both electrons and oxygen ions. It allows oxygen to penetrate at high flux rates without other gas components. Electrical properties are essential to understanding the oxygen transport mechanism and defect structure of this material. By using a gas-tight electrochemical cell with flowing air as the reference environment, we were able to achieve an oxygen partial pressure (P02) as low as 10−16 atm. Total and ionic conductivities of Sr-Fe-Co-O have been studied as a function of P02 at elevated temperature. In air, both total and ionic conductivities increase with temperature, while the ionic transference number is almost independent of temperature, with a value of ≈0.4. Experimental results show that ionic conductivity decreases with decreasing P02 at high P02 (≥10−6 atm). This suggests that interstitial oxygen ions and electron holes are the dominant charge carriers. At 800°C in air, total conductivity and ionic conductivity are 17 and 7 S/cm, respectively. Defect dynamics in this system can be understood by means of the trivalence-to-divalence transition of Fe ions when P02 is reduced. By using the conductivity results, we estimated oxygen penneation through a ceramic membrane made of this material. The calculated oxygen permeability agrees with the experimental value obtained directly from an operating methane conversion reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.