Abstract

Solid-state electrical, photoelectrochemical, and photoelectron spectroscopic techniques have been used to characterize the behavior and electronic structure of interfaces between n-Si, n+-Si, or p+-Si surfaces and amorphous coatings of TiO2 formed using atomic-layer deposition. Photoelectrochemical measurements of n-Si/TiO2/Ni interfaces in contact with a series of one-electron, electrochemically reversible redox systems indicated that the n-Si/TiO2/Ni structure acted as a buried junction whose photovoltage was independent of the formal potential of the contacting electrolyte. Solid-state current–voltage analysis indicated that the built-in voltage of the n-Si/TiO2 heterojunction was ∼0.7 V, with an effective Richardson constant ∼1/100th of the value of typical Si/metal Schottky barriers. X-ray photoelectron spectroscopic data allowed formulation of energy band-diagrams for the n-Si/TiO2, n+-Si/TiO2, and p+-Si/TiO2 interfaces. The XPS data were consistent with the rectifying behavior observed for amorpho...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call