Abstract

In the present work, the impact that the longitudinal shape of channels has on the current produced in the flow of a magneto-hydrodynamic microgenerator (MHDMG) is studied. The goal is to find the micro-channel geometry via modeling to maximize the current output for low Reynolds and Mach regimes. To carry out this study, a 3D dynamic numerical tool relying on the finite volume method was handled with the open-source software OpenFOAM. It is the base model to study the impact of intricate geometries on the ability to produce energy. An additional steady-state 2D analytical model was also developed to check some basic modeling assumptions. Both models have been experimentally validated on the simplest flow system having a constant square cross-section throughout. The results produced by both models cross-check very well and compare favorably with respect to experimental data. Hence, using the validated numerical tool, three shapes have been further investigated, namely, progressive (linear decrease of the cross-section), arc (parabolic decrease of the cross-section), and wavy (sinusoidal shape). It was found that the arc channel provides the greatest current output for the same volumetric flow. It is therefore the preferred choice for developing high current gain and more efficient MHDMG used in micro-scaled actuators and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call