Abstract

Magnetoelectric (ME) composites can be produced by embedding magnetostrictive H particles in a piezoelectric E matrix derived from a piezoelectric powder precursor. Previously, using a bi-disperse hard-shell model (Barbero and Bedard in Comput Part Mech, 2018. https://doi.org/10.1007/s40571-017-0165-4 ), it has been shown that the electrical percolation threshold of the conductive H phase can be increased by decreasing the piezoelectric E particle size, relative to the H phase particle size, and by increasing short-range affinity between the E and H particles. This study builds on our previous study by exploring what happens during sintering of the ME composite when either the H or E particles undergo deformation. It was found that deformation of the H particles reduces the percolation threshold, and that deformation of E particles increases inter-phase H–E mechanical coupling, thus contributing to enhancing of ME coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.