Abstract

SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.