Abstract

The vacuolar potential (V(vac)) and its fluctuations were recorded in red beet vacuoles (Beta vulgaris L.). Measurements with vacuoles in their suspension medium gave V(vac) = 10 +/- 2 millivolts (referred to the external medium) when 3 molar KCl microelectrodes were used. Buffering the microelectrode filling solution at pH 7.7 reversed the sign of the potential: V(vac) = -7 +/- 2 millivolts. The magnitude of the potential fluctuations was lowered by dilution (5-1000 times) with the suspension medium containing components released by the cells during the mechanical preparation. Fluctuations were decreased by 50 millimolar KNO(3) while they were enhanced by 5 millimolar ATP-Mg. No noticeable change in membrane resistance was detected. The presence of an ATPase bound to the tonoplast may explain the recorded noise spectra. These spectra imply a close connection between the rate of ATPase functioning and the magnitude of ionic fluxes across the tonoplast. It is suggested that noise analysis could be used to detect ATPase (or related enzyme) activity in vacuoles. Possible use of H(+) diffusion through a buffered microelectrode, to modify intravacuolar pH, is also suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.