Abstract

PbSe nanocrystal thin-film transistors (TFTs) were passivated using remote plasma atomic layer deposition (ALD) of a ∼10 nm thick Al <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{2}$</tex></formula> O <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{3}$</tex></formula> film at 150 °C. By using a highly reactive remote oxygen plasma source, the time for one complete ALD cycle was about 15 s with growth rates of ∼1.1 Å/cycle. The effective mobilities measured under atmospheric condition from Al <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX"> $_{2}$</tex></formula> O <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{3}$</tex></formula> -passivated PbSe nanocrystal TFTs were comparable to the values reported previously for air-free PbSe nanocrystal TFTs, demonstrating that ALD Al <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{2}$</tex></formula> O <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{3}$</tex></formula> layers prevent oxidation and degradation of nanocrystal films from air exposure. The variation in the effective mobility of passivated devices was also found to be negligible under ambient conditions over a period of 30 days. The results show that remote plasma ALD processing of Al <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{2}$</tex></formula> O <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$_{3}$</tex></formula> is capable of producing an effective passivation layer on air-sensitive nanocrystals with high deposition rates at reduced temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call