Abstract
AbstractEnsemble learning methods have been used to improve performance accuracy through bias-variance trade-off techniques. However, there is still room to improve. This paper proposes an ensemble model to forecast the electrical load behavior based on a hybrid of Extreme Gradient Boosting (XGBoost) and Light gradient boosting machine (LGBM). Extreme gradient boosting (XGBoost), a Light gradient boosting machine (LGBM) and a hybrid of XGBoost and LGBM models are trained, evaluated, and compared. The experiments show that the proposed model outperforms other methods by reducing more than 1% in mean absolute percentage error (MAPE), root mean squared percentage error (RMSPE), and mean absolute error (MAE). The dataset from the Pennsylvania-New Jersey-Maryland interconnection power grid was used to validate the evolutionary capability of the proposed method and the finding of optimal accuracy of the model.KeywordsElectrical load forecastingEnsemble learningExtreme gradient boosting machine (XGBoost)Light gradient boosting machine (LGBM)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.