Abstract
In the smart grid, huge amounts of consumption data are used to train deep learning models for applications such as load monitoring and demand response. However, these applications raise concerns regarding security and have high accuracy requirements. In one hand, the data used is privacy-sensitive. For instance, the fine-grained data collected by a smart meter at a consumer's home may reveal information on the appliances and thus the consumer's behaviour at home. On the other hand, the deep learning models require big data volumes with enough variety and to be trained adequately. In this paper, we evaluate the use of Edge computing and federated learning, a decentralized machine learning scheme that allows to increase the volume and diversity of data used to train the deep learning models without compromising privacy. This paper reports, to the best of our knowledge, the first use of federated learning for household load forecasting and achieves promising results. The simulations were done using Tensorflow Federated on the data from 200 houses from Texas, USA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.