Abstract

In clinical studies, interictal EEG spikes (IS) have been associated with numerous neuropsychological abnormalities, ranging from transitory cognitive impairment to epileptic encephalopathies. Understanding the pathophysiological mechanisms of IS has been hampered by the lack of validated animal models. To mimic IS, a stimulating microelectrode was implanted in the ventral hippocampal commissure and a recording microelectrode in the CA1 region of the hippocampus of normal male rats. Spike patterns were induced using a series of electrical pulses 10–30 ms in duration with a frequency of 0.5–2 Hz and a current of 0.2 mA. The commissural stimulation-evoked population discharges in the hippocampus resembled naturally occurring IS in epileptic rats and, in no cases, resulted in behavioral seizures. For behavioral testing, the Morris water maze, radial arm maze, and object recognition tasks were used. Spikes were induced during sleep between the two sets of water maze trials; during the trials in the radial arm maze task; and prior to the sample phase and during the delay periods in the object recognition task. We demonstrated that rats that received spikes took longer to reach the escape platform in the second set of water maze trials; had significantly more reference errors and required more trials to complete the radial arm maze task; and had lower investigation ratios in the object recognition task. The results indicate that induction of spikes in the hippocampus results in impairment of spatial reference and nonspatial object recognition memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call