Abstract
To describe, through a narrative review, the physiologic principles underlying electrical impedance tomography, and its potential applications in managing acute respiratory distress syndrome (ARDS). To address the current evidence supporting its use in different clinical scenarios along the ARDS management continuum. We performed an online search in Pubmed to review articles. We searched MEDLINE, Cochrane Central Register, and clinicaltrials.gov for controlled trials databases. Selected publications included case series, pilot-physiologic studies, observational cohorts, and randomized controlled trials. To describe the rationale underlying physiologic principles, we included experimental studies. Data from relevant publications were reviewed, analyzed, and its content summarized. Electrical impedance tomography is an imaging technique that has aided in understanding the mechanisms underlying multiple interventions used in ARDS management. It has the potential to monitor and predict the response to prone positioning, aid in the dosage of flow rate in high-flow nasal cannula, and guide the titration of positive-end expiratory pressure during invasive mechanical ventilation. The latter has been demonstrated to improve physiologic and mechanical parameters correlating with lung recruitment. Similarly, its use in detecting pneumothorax and harmful patient-ventilator interactions such as pendelluft has been proven effective. Nonetheless, its impact on clinically meaningful outcomes remains to be determined. Electrical impedance tomography is a potential tool for the individualized management of ARDS throughout its different stages. Clinical trials should aim to determine whether a specific approach can improve clinical outcomes in ARDS management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.