Abstract

A living cell placed in a high strength electric field, can undergo a process known as electroporation. It is believed that during electroporation nano-scale defects (pores) occur in the membrane of the cell, causing dramatic changes to the permeability of its membrane. Electroporation is an important technique in biotechnology and medicine and numerous methods are being developed to improve the understanding and use of the technology. We propose to extend the toolbox available for studying electroporation by generating impedance distribution images of the cell as it undergoes electroporation using Electrical Impedance Tomography (EIT). To investigate the feasibility of this concept, we develop a mathematical model of the process of electroporation in a single cell and of EIT of the process and show simulation results of a computer-based finite element model (FEM). Our work is an attempt to develop a new imaging tool for visualizing electroporation in a single cell, offering a different temporal and spatial resolution compared to the state of the art, which includes bulk measurements of electrical properties during single cell electroporation, patch clamp and voltage clamp measurement in single cells and optical imaging with colorimetric dyes during single cell electroporation. This paper is a preliminary theoretic feasibility study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call