Abstract
This paper describes a cancer detection procedure based on customised electrical impedance spectroscopy (EIS) in breast cancer surgical samples and an analysis of its outcomes. A tissue analyser was developed to inject a low-amplitude alternating current with penetrating electrodes into breast specimens along a broad spectrum of frequencies. Experimental measurements were carried out on more than one hundred excised breast cancer specimens, with the goal of discriminating between the tumour and surrounding non-neoplastic tissue. The probe was inserted in different locations immediately after surgical excision in order to measure tissue impedance (modulus and phase). Electrical impedance varied significantly between neoplastic and surrounding non-neoplastic tissues, with a low standard deviation among the different measurements, confirming good reproducibility. Tumours could be discriminated from non-neoplastic tissues according to their impedance modulus value for high frequencies and phase value for low frequencies. Impedance also varied significantly in both non-neoplastic and tumour tissues depending on the patient's age and tumour characteristics, such as size and histological sub-type. EIS is able to discriminate between healthy tissue and cancer. Future developments of this technology could be exploited for intraoperative real-time evaluation of the transition zone between cancer and normal tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.