Abstract

Ionic polymer metal composites (IPMCs) are a class of soft electroactive materials that are recently finding extensive application as mechanical sensors and energy harvesters in liquids. In their most fundamental form, IPMCs are composed of a hydrated ionomeric membrane that is sandwiched between two electrochemically deposited metal electrodes. Ionomer swelling, counterion diffusion, and the formation of electric double layers are some of the physical phenomena underpinning energy transduction in IPMCs; however, a thorough understanding of the relative influence of such phenomena is yet to be established. Here, we propose a physics-based modeling framework, based on the Poisson-Nernst-Planck system, to describe IPMC chemoelectrical response to an imposed time-varying flexural deformation. We utilize the method of matched asymptotic expansions to compute a closed-form solution for the electric potential and counterion concentration in the IPMC. The model predicts that IPMC sensing is independent of the time rate of deformation and linearly correlated to the mechanical curvature, with a coefficient of proportionality that is a function of the ionomer thickness and the temperature. Thus, our results demonstrate that the characterization of IPMC electrical impedance suffices to identify all the parameters that are relevant to sensing, in contrast with the current state of knowledge. Theoretical results are validated through experiments on patterned in-house fabricated IPMC samples that are subject to time-varying flexural deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.