Abstract

Cell lysis and the separation of intracellular components are key steps in the analysis of intracellular components. Advances in micro-electro-mechanical system (MEMS) technologies have prompted a number of investigations into the potential applications of microfluidics to the development of cell lysis and sample separation methods. The electrical force is considered to have excellent potential for parallelizing and automating cell lysis and sample separation methods. In this review, we focus on research works related to electrical force-based continuous cell lysis and sample separation techniques. We provide brief explanations of the major developed techniques and summarize their advantages and limitations with respect to their applicability as a part of integrated microfluidic cell analysis system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.