Abstract
In the present study, we aimed to examine the effect of blockade of L-type Ca2+ channels (LTCC) and in addition the removal of extracellular Ca2+, on EFS-induced relaxations in rings of rat mesenteric artery. EFS applied to the tissues precontracted with phenylephrine caused relaxations which were markedly inhibited by nifedipine (10−7M) and tetraethylammonium (TEA) (1mM). Addition of LTCC opener BAY K 8644 (10−7M) failed to enhance the relaxations. Upon removal of Ca2+, EFS with the same stimulation parameters produced frequency-dependent transient contractions. Tetrodotoxin (10−6M), capsaicin (10−5M) and removal of endothelium did not alter these contractions suggesting that they were not neural in origin and endothelium-derived contracting factors were unlikely to be involved. However, they were increased by nearly 40% in response to BAY K 8644 (10−7M) and were inhibited by nifedipine (10−7M), indicating that activation of the LTCCs was essential. Inositol triphosphate (InsP3) receptor antagonist 2-APB (10−4M) significantly reduced, and high concentration of caffeine (20mM) almost totally suppressed the contractions. These results suggest that in the absence of extracellular Ca2+ EFS through membrane depolarization, evokes the opening of the LTCCs which subsequently leads to the release of Ca2+ from internal stores via InsP3 receptors, a phenomenon known as Ca2+ channel-induced Ca2+ release (CCICR), to trigger vasoconstriction. That activation of LTCCs causes arterial relaxation or contraction depending on the Ca2+ status apparently exemplifies how the same messenger fulfils opposing physiological functions in a given cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.