Abstract

Two styles of flip-chip packages for next-generation microprocessors were designed: a low-cost organic ball-grid-array (BGA) and a thin-film-on-ceramic land-grid array (LGA). Simultaneous switching output (SSO) noise, and core noise were measured. Although SSO was improved by a factor of two over the previous generation of packaging, core noise was still quite significant. We found that core noise is best managed by placing low-inductance capacitance close to the noise source, i.e., using on-chip capacitors, coupled planes in the package, or on-package bypass capacitors. Because of the lower impedance of its power planes, the ceramic package showed significantly better electrical performance than the organic. Addition of on-package bypass capacitors greatly narrows the gap between the two packages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.