Abstract

Based on the intersubband transition theorem of the semiconductors, we have theoretically investigated the optical properties of a three-terminal silicene-based device under the irradiation of a circularly polarized terahertz electromagnetic field. The system spin–orbit-coupled electronic structure may be engineered to topological insulated (TI) and band insulated (BI) state, respectively, by the staggered sublattice potential from the back-gate voltage. It has been demonstrated that the dielectric functions and optical absorption spectra from the TI spin-up and spin-down subbands behave redshift and blueshift, respectively, with the increase in the sublattice potential, while those from the BI spin-up and spin-down subbands have been proven to be continually blue-shifted with the staggered sublattice potential. The novel features may be useful in the design of the spintronic and optoelectronic devices based on silicene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.