Abstract
A series of poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE))/barium strontium titanate (BST) nanocomposites were fabricated by solution casting method. The addition of BST nanoparticles could enhance both the dielectric constant and the displacement of the resultant composite significantly. The surface activation of BST nonaparticles with KH550 was confirmed as an effective way to improve the breakdown strength of the composite. The high electric displacement ( D > 15 μC/cm 2), breakdown field (>200 MV/m) and low dielectric loss in P(VDF-CTFE)/BST nanocomposites suggest that the high electrical energy density may be desirable. That indicates the potential application of this class of copolymer/ceramics nanocomposites for high energy storage components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.