Abstract

Electrical energy consumption per order (EEO) is an important figure-of-merit for the selection and optimization of ultraviolet (UV)-based advanced oxidation processes (UV-AOPs). However, EEO applications are limited by the lack of an accurate and facilitative evaluation method because EEO presents reactor property dependence. In this study, we developed an EEO prediction method for multiscale UV-AOP reactors for micropollutant removal in water. The method utilized the reaction rate constants determined in a reference reactor (e.g., mini-fluidic photoreaction system), complemented by a scale-up method that clarified the dependence of EEO on reactor properties. The predicted results of various UV-AOPs were verified experimentally in four bench/pilot-scale reactors in laboratory and a full-scale flow-through reactor (FFR) in field using sulfamethazine as a model micropollutant. For example, EEO values of 0.105 and 0.058 kWh m-3 order-1 were predicted in the FFR at H2O2 doses of 5 and 10 mg L-1, respectively, which generally agreed with verification results. Additionally, the developed method could assist the identification of appropriate reactors in the laboratory for EEO measurements, providing a valuable supplement for the EEO prediction in practice. The developed method presents acceptable accuracy, convenience, and low cost, which would significantly facilitate EEO evaluations for practical UV-AOP applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.