Abstract

AbstractElectron transport via indirect exchange interactions between octahedral sites in spinels is affected by cationic or anionic vacancies. Thus, the deviation of the electron hopping mechanism is investigated, from a constant energy barrier toward a variable range energy barrier in iron‐deficient and oxygen‐deficient cubic magnesium ferrite spinels. Variable range electron hopping activation energy at high temperatures is consistent with the modified cation–anion interactions in the distorted structure of an ionic deficient cubic magnesium ferrite spinel. For these observations, an instrumental method is developed to evaluate the electron exchange interactions and general redox kinetics on surfaces, managed by exposure to the flow of a wide variety of desired gases. The applications of this instrument are far beyond the example studies reported here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call