Abstract

Active plasmonic nanostructures have garnered considerable interest in physics, chemistry, and material science due to the dynamically switchable capability of plasmonic responses. Here, the first electrically dynamic control of magnetic plasmon resonance (MPR) through structure transformation by selective deposition of lithium on a metal-insulator-metal (MIM) structure is reported. Distinct optical switching between MPR and surface plasmon polariton (SPP) excitations can be enabled by applying a proper electrical current to the electrochemical cell. Furthermore, the structure transformation through lithium metal deposition indicates the reconfigurable MPR excitation in a full cycling of the charging and discharging process. The results may shed light on electrically compatible self-powered active plasmonics as well as nondestructive optical sensing for electrochemical evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.