Abstract

The electrocatalytic conversion of nitrate (NO3 - ) to NH3 (NO3 RR) at ambient conditions offers a promising alternative to the Haber-Bosch process. The pivotal factors in optimizing the proficient conversion of NO3 - into NH3 include enhancing the adsorption capabilities of the intermediates on the catalyst surface and expediting the hydrogenation steps. Herein, the Cu/Cu2 O/Pi NWs catalyst is designed based on the directed-evolution strategy to achieve an efficient reduction of NO3 ‾. Benefiting from the synergistic effect of the OV -enriched Cu2 O phase developed during the directed-evolution process and the pristine Cu phase, the catalyst exhibits improved adsorption performance for diverse NO3 RR intermediates. Additionally, the phosphate group anchored on the catalyst's surface during the directed-evolution process facilitates water electrolysis, thereby generating Hads on the catalyst surface and promoting the hydrogenation step of NO3 RR. As a result, the Cu/Cu2 O/Pi NWs catalyst shows an excellent FE for NH3 (96.6%) and super-high NH3 yield rate of 1.2molh-1 gcat. -1 in 1m KOH and 0.1m KNO3 solution at -0.5V versus RHE. Moreover, the catalyst's stability is enhanced by the stabilizing influence of the phosphate group on the Cu2 O phase. This work highlights the promise of a directed-evolution approach in designing catalysts for NO3 RR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call