Abstract
The accurate characterization of the electrical double layer properties of nanoparticles is of fundamental importance for optimizing their physicochemical properties for specific biotechnological and biomedical applications. In this article, we use classical solvation density functional theory and a surface complexation model to investigate the effects of the pH and the nanoparticle size on the structural and electrostatic properties of an electrolyte solution surrounding a spherical silica oxide nanoparticle. The formulation has been particularly useful for identifying dominant interactions governing the ionic driving force at a variety of pH levels and nanoparticle sizes. As a result of the energetic interplay displayed between electrostatic potential, ion-ion correlation and particle crowding effects on the nanoparticle surface titration, rich, non-trivial ion density profiles and mean electrostatic potential behavior have been found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.