Abstract

By using a metal rod-to-water electrode, we studied the properties of electrical discharge paths induced by a visible laser beam, which is a pulsed Nd:YAG laser beam with a wavelength of lambda = 532 nm, in an air gap with a nonuniform DC electric field. The discharge paths are classified into guiding and triggering types, where the former is defined as the path across the plasma region, and the latter refers to the paths excluding the former one. We succeeded in capturing the time-integrated image for the discharge path induced along or around the light axis of the pulsed YAG laser. From the results of the experiments, it is inferred that the luminous plasma produced by a pulsed YAG laser can guide or trigger the discharge path, and the nonluminous plasma region along the light axis of the laser beam has the capability to induce a discharge path. A weakly ionized channel was produced as in the case of an ultraviolet laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.