Abstract

Ceramic injection molding (CIM) or extrusion requires molds and dies with high hardness to reduce tool wear which occurs due to processing of highly abrasive ceramic compounds. Besides the wear resistance high strength and toughness are necessary for mold materials to withstand the loads during application. Recent work of the authors has shown the high potential of electrical discharge machinable ceramic composites based on oxide ceramic matrices for high wear applications. The use of alumina zirconia composites (AZC) as matrix for electrically conductive composites enables the combination of high hardness of alumina and high strength and toughness of zirconia in order to customize the properties of the mold material. This study focuses on development of ED machinable AZCs with addition of 24 vol.-% titanium carbide as electrically conductive phase. The composition of the matrix was varied from pure alumina to pure zirconia in 5 steps. Disks for mechanical and electrical characterization and electric discharge machining experiments were manufactured by hot pressing. Results show that hardness, strength and toughness can be almost linearly correlated to composition from pure alumina matrix with a 4-point bending strength of 430 MPa, a hardness of 2250 HV10 and a toughness of 3.7 MPa√m to pure zirconia matrix with 1020 MPa bending strength, 1490 HV10 and a toughness of 5.9 MPa√m. Variation of matrix composition also leads to significantly different EDM characteristics. The material removal rate shows a maximum at 19 vol.-% zirconia and 58 vol.-% alumina while surface roughness of the machined composites decreases significantly with increasing zirconia amount. SEM and EDX analysis were made to identify removal mechanisms of each ceramic matrix phase. It was found that alumina tends to be removed by vaporization due to electrical discharges. Zirconia, which has a higher melting and vaporization point than alumina melts during the formation of the plasma channel. Zirconia cannot be removed in total from the surface but forms a smooth and compact amorphous layer of resolidified material on both sample and electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call