Abstract
In this work, we analyze the physical processes of a pulsed discharge in a dielectric (Teflon) cavity. This type of discharge is generated in a coaxial pulsed plasma thruster (PPT) having a central Teflon cavity to produce a high-pressure cloud of ablation products during the discharge pulse. The primary intended role of this model is to provide upstream boundary conditions for particle simulation codes used to study the exhaust plume. The main features of the electrical discharge in the dielectric cavity include Joule heating of the plasma, heat transfer to the dielectric, decomposition of the dielectric followed by partial ionization, and acceleration of the plasma up to the sound speed at the cavity exit. We consider a diffuse type of discharge assuming that all plasma parameters are uniform in the cavity. The system of equations is based on the plasma energy balance, thermal conductivity, dielectric ablation, and mass balance. It is found that most of the energy of the plasma column is carried off by particle convection to the dielectric and by radiation. It is found that during the pulse, the electron density peaks at about 10/sup 24/ m/sup -3/ and decreases to 10/sup 21/ m/sup -3/ toward the end of the pulse, whereas the electron temperature peaks at about 2.2 eV and decays to 1.5 eV. Teflon surface temperature peaks at about 650 K. Predicted plasma temperature and ablated mass are found to be in agreement with available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.