Abstract

The authors study deoxyribonucleic acid (DNA) sensing characteristics of carbon nanotube network field-effect transistors (CNNFETs) by monitoring their electrical responses upon immobilization with a DNA probe, hybridization with DNA analytes, and intercalation with a N,N′-bis(3-propylimidazole)-1,4,5,8-naphthalene diimide modified with Os(2,2′-bipyridine)2Cl+ pendants. The CNNFETs immobilized by single-stranded DNA molecules demonstrate the selective sensing of its complementary and single-base mismatched DNA (difference of ∼16% in reduction of normalized drain current Id). Subsequent intercalation demonstrates a further sensitivity enhancement (difference of ∼13% in Id reduction) due to specific binding between hybridized DNA and intercalators, corroborated by the x-ray photoelectron spectroscopy study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.