Abstract

InAs-Sb/GaSb type-II strain compensated superlattices (SLS) are currently being used in mid-wave and long-wave infrared photodetectors. The electronic bandstructure of InSb and GaSb shows very strong anisotropy and non-parabolicity close to the Γ-point for the conduction band (CB) minimum and the valence band (VB) maximum. Particularly around the energy range of 45–80 meV from band-edge we observe strong non-parabolicity in the CB and light hole VB. The band-edge dispersion determines the electrical properties of a material. When the bulk materials are combined to form a superlattice we need a model of bandstructure which takes into account the full bandstructure details of the constituents and also the strong interaction between the conduction band of InAs and valence bands of GaSb. There can also be contact potentials near the interface between two dissimilar superlattices which will not be captured unless a full bandstructure calculation is done. In this study, we have done a calculation using second nearest neighbor tight binding model in order to accurately reproduce the effective masses. The calculation of mini-band structure is done by finding the wavefunctions within one SL period subject to Bloch boundary conditions ψ(L)=ψ(0)eikL. We demonstrate in this paper how a calculation of carrier concentration as a function of the position of the Fermi level (EF) within bandgap(Eg) should be done in order to take into account the full bandstructure of broken-bandgap material systems. This calculation is key for determining electron transport particularly when we have an interface between two dissimilar superlattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.