Abstract

A superconducting motor shows several advantages, such as smaller size and higher efficiency, over a conventional motor, especially utilized in ship propulsion applications. However, the size reduction merit appears for large capacity, more than several MW. We develop a large capacity synchronous motor with a rotating high-temperature superconducting (HTS) coil, that is aimed to be utilized for ship propulsion, so it has a low rotating speed of about 200 rpm. The ship propulsion motor must generate high electromagnetic torque instead of low speed. Therefore, the rotor (field) coils have to generate a large magnetic flux that results in a large amount of expensive HTS conductor for the field coil. In this paper a 17 MW HTS motor for ship propulsion is designed with a cost-effective method because the HTS conductor cost is a critical factor in the construction of an HTS motor. Unlike conventional rotating machines, the superconducting motor consists of an iron-coreless structure. Most conventional motors can be designed with small error based on two-dimensional magnetic field analysis. However, the superconducting motor shows an even larger error between the two- and three-dimensional based designs. Thus, in order to improve the design accuracy, we have calculated the back electromotive force (EMF) using 3D magnetic field analysis. An output performance evaluation has also been carried out to obtain a design with higher efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call