Abstract
Parallel aligned liquid crystal on silicon (PA-LCoS) displays have found wide acceptance in applica- tions requiring phase-only modulation. Among LCoS devices, and PA-LCoS as a specific case, digital address- ing has become a very common technology. In principle, modern digital technology provides some benefits with respect to analog addressing such as reduced interpixel cross-talk, lower power consumption and supply volt- age, gray level scale repeatability, high programmability, and noise robustness. However, there are also some degradating issues, such as flicker, which may be enhanced. We analyze the characteristics of the digital pulse width modulated voltage signals in relation to their effect on the optical modulation capabilities of LCoS displays. We apply calibration techniques developed in our laboratory, basically the classical linear polarimeter extended to take into account the existence of flicker. Various digital sequence formats are discussed, focusing the analy- sis on the variations in the magnitude of the applied voltages across the LC layer. From this analysis, we obtain how to amplify the retardance dynamic range and how to enhance linearity in the device without enhancing flicker and without diminishing the number of available quantization levels. Electrical configurations intended for phase-only and intensity modulation regimes, useful in diffractive optics, are given. © 2014 Society of Photo-
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.