Abstract

Glass fiber-reinforced epoxy composites (GFREC) have been widely used in the mechanical components of electrical and electronic devices because of its lightweight, high mechanical strength, excellent electrical insulation properties and corrosion resistance. The research on the electrical degradation dynamics of GFREC is of great significance to avoid the failure of electrical insulation system. Herein the composite samples were prepared using vacuum impregnation technique. The electrical degradation morphology and statistical characteristics (electrical tree length, width, expansion coefficient, breakdown probability and breakdown time) were discussed. The results show that the electrical tree will develop towards the fiber side and grow rapidly along the interface in GFREC. The interfacial orientation will affect the growth characteristics of electrical tree. When the angle between the glass fiber and the needle electrode is 45°, the composite material has relatively superior tree propagation resistance performance, lower breakdown probability and higher breakdown time. The effects of electric field distribution on the tree initiation and electrical degradation are discussed, which reveals the relationship between the electrical degradation and the fiber orientations. The electric field-driven tree growth (FDTG) model is used to explain the growth of trees along interfaces with different orientations from the perspective of dynamic electric field distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.